
Research Statement
Todd Schmid

My research is in mathematical logic, specifically universal algebra and coalgebra, and the applications
of these disciplines to theoretical computer science and other areas of mathematics. I am interested in
formal notions of behaviour arising in the study of state machines and other discrete event dynamical
systems, particularly when behaviours can be composed and manipulated algebraically. My work is largely
motivated by mathematical beauty, like many topics in the European computer science canon, but it is also
deeply rooted in practical problems in the study of automata and the formal semantics of programming
languages, concurrency, and model checking.

Previous Work

In the last few years, my work has been motivated by open axiomatization problems in the semantics of
programming languages.

A programming language consists of a set of blocks of code that can be composed and manipulated
algebraically and that stand for instructions that a computer can follow. Different sequences of instructions
can produce the same computational outcome, and we call blocks of code that denote equivalent instruc-
tions behaviourally equivalent. For example, for any condition b and any two programs p1 and p2, the code
snippets “if b then p1 else p2” and “if not b then p2 else p1” are intuitively behaviourally equivalent. The
formal equation

if b then p1 else p2 = if not b then p2 else p1

is therefore said to be sound with respect to behavioural equivalence, and might be included in an
axiomatization of (a set of equations capturing) behavioural equivalence.

Definition. If every formal equation between behaviourally equivalent programs can be derived from an
axiomatization, the axiomatization is said to be complete with respect to behavioural equivalence.

The search for complete axiomatizations of behavioural equivalence in programming languages is
one of the oldest sources of open problems in theoretical computer science [Kle56; Mil84]. A complete
axiomatization can often be turned into a decision procedure for program equivalence. Showing that an
axiomatization is complete is often extremely difficult, and only a few tools exist that are both general and
powerful for proving completeness theorems. During my PhD, the central aims of my research have been
to elucidate the mechanics of completeness proofs that exist in the literature, reapply them to prove new
completeness results, and provide general frameworks for constructing programming languages where
existing axiomatization techniques apply.

Coalgebraic completeness theorems. Equational axiomatizations and their properties are studied in
universal algebra [Coh81], but the appropriate notions of “instruction” and “behaviour” can more fruitfully
be formalized in the language of universal coalgebra [Rut00].

Definition. Given an endofunctor F on a category C, an F -coalgebra is a pair (X, γ) consisting of an object
X, called the state space, and an arrow γ : X → FX, called the transition structure. If the objects of C
are sets, then the elements of a state space are called its states. A homomorphism h : (X, γ) → (Y, ϑ) of
F -coalgebras is an arrow h : X → Y such that F (h) ◦ γ = ϑ ◦ h.
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Language:

| b (b ∈ 2At)

| a (a ∈ Act)

| e1 +b e2 (if b then e1 else e2)

| e1 ; e2
| e(b) (while b do e)

(a1 +c a1 ; a2)
(b)

a2 ; (a1 +c a1 ; a2)
(b)

¬b

b ∧ c | a1

b ∧ ¬c | a1True | a2

L → ({0, 1}+ Act× L)At

Figure 1: The syntax of GKAT and an example of a state machine (a coalgebra) specified by a GKAT
program. Above, At is a set of elements interpreted as atomic elements in a Boolean algebra of “tests”.

Coalgebras are general state-based systems. By varying the category C and the endofunctor F , one can
obtain deterministic, nondeterministic, and probabilistic automata [Rut98], pushdown automata [Sil+13],
and Turing machines [Jac11; Gon+22] as examples of F -coalgebras.

The blocks of code that make up a programming language are states in an F -coalgebra that encodes
their instructional information. The algebra of system behaviours expressible in a programming language
consists of blocks of code up to behavioural equivalence, which is determined by C and F .

Definition. If x and y are states in the F -coalgebras (X1, γ1) and (X2, γ2) respectively, we say that x and y

are behaviourally equivalent if there exist homomorphisms h1 : (X1, γ1) → (Z, ζ) and h2 : (X2, γ2) → (Z, ζ)

such that h1(x) = h2(y).

For specific C and F , behavioural equivalence instantiates to notions of equivalence from logic and
computer science, including bisimilarity of Kripke frames/models from modal logic [Cir+11] and Myhill-
Nerode equivalence from formal language theory [BCR15].

In [SRS21], my coauthors and I study axiomatizations of behavioural equivalence for set-based
coalgebras in general. Fix an endofunctor F on the category of sets and functions.

Definition. A subset V ⊆ X is open in an F -coalgebra (X, γ) if γ restricts to an F -coalgebra γ|V : V → FV .

Definition. Let V be a class of F -coalgebras. An F -coalgebra (Z, ζ) is called locally final in V if

1. for any z ∈ Z there is a V ⊆ Z open in (Z, ζ) such that z ∈ V and (V, γ|V ) ∈ V, and

2. every F -coalgebra (X, γ) in V admits a unique homomorphism (X, γ) → (Z, ζ) of F -coalgebras.

Theorem 1 (§5 of [SRS21]). Let F be an endofunctor on the category of sets and functions. In an F -coalgebra
(X, γ), behavioural equivalence is equality if and only if there exists a class V of F -coalgebras such that (X, γ)

is locally final in V and V is closed under quotients.

In other words, an axiomatization of behavioural equivalence is complete in a programming language if
and only if the coalgebra consisting of blocks of code modulo the axioms satisfies a certain universal property.
This generalizes the approach to completeness proofs found in a number of historically significant works in
the Kleene algebra [Sal66; Jac06; Sil10; Mil10; Sch+21] and process algebra literature [Mil84; GF20],
starting with Salomaa’s complete axiomatizations of the algebra of regular events in the 1960s [Sal66].
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v0 v1

v2 v3

v4 v5

v6 v7

a0 ∨ a1

a0 ∨ a1

a2 ∨ a3

a2 ∨ a3

a3 | p

a3 | p

a2 | p a2 | p

a0 | p

a0 | p

a1 | p a1 | p

Figure 2: As depicted, this automaton is well-nested. However, identifying v1 with v4, and v3 with v6, we
obtain an automaton that is not well-nested.

GKAT. Guarded Kleene algebra with tests (GKAT) [KT08] is a deceptively simple programming language
designed to capture control flow (if-then-else and loop constructs) in imperative programming languages
like Java, C++, and Python. In [Smo+20], it was shown that behaviourally equivalent blocks of GKAT
code can be algorithmically identified extremely efficiently. An axiomatization of equivalence appears
in [Smo+20], but their proof of completeness requires an undesirable axiom called the uniqueness axiom.
Hoping to avoid the uniqueness axiom, the authors of [Smo+20] made the following conjecture.

Conjecture 1. A certain class of coalgebras generated from GKAT programs, the class of well-nested
automata, is closed under quotients.

The significance of Conjecture 1 is that the provable equivalence classes of GKAT programs form a
coalgebra that is locally final in the class of well-nested automata. By Theorem 1, Conjecture 1 implies

Conjecture 2. The uniqueness axiom can be derived from the other axioms of GKAT (equivalently, the
axiomatization without the uniqueness axiom is complete).

In [Sch+21], my coauthors and I observe that the automaton in fig. 2 is a counterexample to Conjec-
ture 1: it is a well-nested automaton with a quotient that is not well-nested. We also offer a fresh take on
the algebra of behaviours of GKAT programs by identifying it with an algebra of what we call nested trees.

Theorem (§5 of [Sch+21]). The algebra of behaviours of GKAT programs over atomic tests At and actions Σ
is a subalgebra of the algebra of At-branching Σ-labelled trees with leaves in At.

The set of all trees forms a compact metric space, in which the nested trees are dense. Among our
contributions is a characterization of nested trees as certain limits.

Figure 2 disproves Conjecture 1, but Conjecture 2 and the completeness problem for GKAT remain
open. In a recent breakthrough, my coauthors and I proved that the conjectured axiomatization of GKAT
in [Smo+20] is complete for a large fragment of GKAT programs called the skip-free fragment [KSS23].

Theorem ([KSS23]). If e and f are behaviourally equivalent skip-free GKAT expressions, then ⊢ e = f is
provable in GKAT without using the uniqueness axiom.

This settles Conjecture 2 for that fragment. Our approach reduces the problem to a completeness
theorem due to Clemens Grabmayer and Wan Fokkink [GF20] for a different language.

Processes Parametrized. Specialized programming languages are designed to capture particular aspects
of computing. GKAT is a good example of this: its constructs are restricted to control flow, ie. conditional
statements like if-then-else and loop statements like while-do. This makes GKAT perfect for studying
how algebraic manipulations affect the control flow structure of real programs, since it abstracts away
from irrelevant details like memory management. Other specialized programming languages include
probabilistic programming languages [BSV19] and languages for concurrency [Mil80].
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In [Sch+22], my coauthors and I propose a general framework for designing and studying specialized
programming languages that capture computational effects like control flow, uncertainty, concurrency, and
more. Formally, given an algebraic theory and two sets Act and Var, our processes parametrized framework
generates a programming language Exp, a functor B, a B-coalgebra structure (Exp, ϵ), and a complete
axiomatization of behavioural equivalence in (Exp, ϵ).

Definition. Let S be an algebraic signature and EQ a set of formal equations between S-terms. Define the
expression language Exp to be the set of terms generated by the grammar

v | ae | σ(e1, . . . , en) | µv e (v ∈ Var, a ∈ Act, σ ∈ S, and e, ei ∈ Exp)

The variable v is free in e if it does not appear within the scope of any µv, unguarded in e if it appears
outside the scope of every a(−), and guarded (gdd.) in e if it is not unguarded in e.

If M constructs the free S-algebra satisfying EQ on every set, define the functor

B = M(Var + Act× (−))

on the category of sets and functions.

Theorem (See [Sch+22]). There is a B-coalgebra structure (Exp, ϵ) on the expression language such that
for any finite B-coalgebra (X, γ), and any x ∈ X, there is an expression e ∈ Exp such that x and e are
behaviourally equivalent. Furthermore, the equations EQ and the fixed-point rules

w not free in e

µv e = µw e[v := w]

v is gdd. in e

µv e = e[v := µv e]

g = e[v := g] v is gdd. in e

g = µv e

are a complete axiomatization of behavioural equivalence in (EQ, ϵ).

The processes parametrized framework captures many existing examples of specialized programming
languages, like in fig. 3, and even GKAT appears as a fragment of one of these languages.

Furthermore, in [Sch22a], I extend the processes parametrized framework to a setting where a partial
order on states is embedded in the coalgebra structure specified by a program (the category C is the
category of partially ordered sets and monotone maps). This captures examples of process calculi in the
literature that were not adequately described by the processes parametrized framework, such as Stark and
Smolka’s probabilistic variation of Milner’s algebra of processes in fig. 3 [SS00].

Each of the programming languages covered by the processes parametrized framework has an order-
theoretic version, and in the category of partially ordered sets, the behaviours of ordered coalgebras are
themselves ordered. I compare the classic notions of similarity [HJ04] with the behavioural order and give
sufficient conditions on (S,EQ) for the two to coincide. This led me to a characterization of the algebraic
theories (S,EQ) for which two-way similarity and bisimilarity coincide (see §8 of [Sch22a]).

Monad presentations. In the processes parametrized framework, one of the ingredients in the definition
of the functor B is a construction of the free algebra satisfying a given algebraic theory. Free algebra
constructions are examples of (finitary) monads [Mac88]. Determining whether a particular monad M is
a free-algebra construction involves finding a presentation for it (see, for example, [BSV19]), a natural
algebraic structure on MX that satisfies the necessary universal property. Monad presentations in the
classical setting, where algebraic theories consist of equations, exist for all the canonical examples and are
well-studied. The ordered setting is a different story, particularly when it comes to probabilities.
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Theory of semilattices (with 0):

S = {0,+}

EQ =


0 + x = x

x+ x = x

x+ y = y + x

x+ (y + x) = (x+ y) + x


⇝

Language:

| v (v ∈ Var)

| ae1 (a ∈ Act)

| 0
| e1 + e2

| µv e (v ∈ Var)

µv (av + abv + u)

b(µv (av + abv + u))

u

a

ab

Exp → P(Var + Act× Exp)

Figure 3: A concurrent programming language first explored in [Mil84], generated from the algebraic
theory of semilattices (with 0) in the processes parametrized framework. Here, PX is the finitary powerset
of X, which constructs the free semilattice (with 0) on X.

In [Sch22b], I provide a number of presentations for monads on the category of partially ordered sets,
particularly focusing on free ordered modules and ordered probability distributions. For example, consider
the ordered semiring R+ consisting of nonnegative real numbers.

Definition. A subset U ⊆ X of a partially ordered set (X,≤) is upper if x ∈ U and x ≤ y implies y ∈ U .

Theorem ([Sch22b]). The free ordered R+-module on a partially ordered set (X,≤) is the set of finitely
supported functions X → R+ equipped with the partial order

f1 ⊑ f2 ⇐⇒ (∀ upper U ⊆ X)
∑
x∈U

f1(x) ≤
∑
x∈U

f2(x)

Regular Subfractals. A surprising application area of coalgebra is in the geometry of fractal or self-
similar sets. Many famous examples of fractal sets can be characterized as final F -coalgebras on some
category [Fre08; Bha+14; Rat+21; NM21]. A systematic approach to realizing fractals as final coalgebras
involves writing them down as solutions to recursive program specifications, systems of equations such as

X1 = t1(X1, . . . , Xn, Y1, . . . , Ym)

...

Xn = tn(X1, . . . , Xn, Y1, . . . , Ym)

for terms t1, . . . , tn in a free algebra [MM06; Lei11]. Recursive program specifications give recipes for
the construction of self-similar sets as in fig. 4. Recursive program specifications generalize the iterated
function systems of Hutchinson [Hut81], which are operators on the space of nonempty compact subsets of
a complete metric space M of the form

X 7−→ σ1(X) ∪ · · · ∪ σn(X)

where each σi is a contraction on M . We generalize from “one-variable recipes” to “n-variable recipes”.

In [SNM23]1, my coauthors and I show that Milner’s process calculus [Mil80] provides a syntax for
recursive specifications of fractal sets. We call a fractal set that is generated by a process term a regular
subfractal, because they are always subsets of a self-similar set generated by an iterated function system.

1This paper won the Best Paper Award at CALCO 2023.
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e = µv (av + bf + cf)

where f = µw (bw + bv + cv)

X1 X2a b

b+ c

b+ c

a(x, y) = (x/2 + 1/4, y/2 +
√
3/4)

b(x, y) = (x/2, y/2)

c(x, y) = (x/2 + 1/2, y/2)

X1 = a(X2) ∪ b(X2) ∪ d(X1)

X2 = c(X1)

Figure 4: A Sierpinski gasket with a recursively deleted triangle. Generated by a fractal recipe specified by
the process term e, which denotes the vertex X1 of the labelled graph on the left. The actions (labels of the
directed graph) have been interpreted as contractions on R2.

As we can see from fig. 4, there are pairs of process terms that are fractal equivalent, meaning they
generate the same regular subfractals. My coauthors and I showed that fractal equivalence of processes
coincides with trace equivalence, a well-known notion of equivalence in process algebra [BBR09]. This
led to a sound and complete axiomatization of fractal equivalence, revealing an algebraic structure to
fractal recipes. In other words, one can always derive equivalences between fractal sets without having to
construct isometries or homeomorphisms explicitly.

Additionally in [SNM23], my coauthors and I adapted our construction of fractals from Milner’s process
terms to the probabilistic calculus studied by Stark and Smolka [SS00], and showed that probabilistic
process terms generate fractal probability measures. We call these probability measure regular subfractal
measures. In the same paper, we showed that fractal submeasure equivalence of probabilistic processes
coincides with Kerstan and König’s notion of infinite trace equivalence [KK13] for probabilistic processes.
However, we left a sound and complete axiomatization of infinite trace equivalence as an open problem.

Future Work

Going forward, I will develop general strategies for constructing and axiomatizing programming languages.
Moreover, I will take my “algebra of behaviours” perspective out of the realm of programming language
theory and apply it in other areas of mathematics.

Open axiomatization problems. Several related completeness problems exist in the literature on pro-
gramming languages.

Project: The question of whether the axiomatization of GKAT (without the uniqueness axiom) in [Smo+20]
is complete remains open. In [KSS23], my coauthors and I were able to reduce the completeness problem
for a certain fragment of GKAT to a famous problem posed by Milner [Mil84], which was recently
solved [GF20; Gra22]. I will resolve the full completeness conjecture for GKAT by reducing it to Milner’s
completeness problem in its entirety.

Project: In [Sch+22], my coauthors and I showed that GKAT is an example of a star fragment, a gener-
alization of regular expressions suggested by the processes parametrized framework. Examples of star
fragments include GKAT and Milner’s regular expressions modulo bisimilarity, but they also include new
examples, such as regular expressions that model probabilistic programs, programs that mix nondetermin-
ism and probability, tree-searching algorithms, context-free grammars, and more. To date, the only star
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fragment with a solved completeness problem is Milner’s [Mil84; Gra22]. I will specifically investigate the
completeness problems of probabilistic star fragments, as they provide intuitive syntaxes and algebraic
reasoning tools for Markov chains/decision processes and other models of probabilistic computing.

Project: In collaboration with Corina Ĉırstea, Lawrence Moss, Victoria Noquez, Alexandra Silva, and Ana
Sokolova, I am working to axiomatize infinite trace equivalence for Stark and Smolka’s probabilistic process
calculus, which Moss, Noquez and I showed coincided with fractal measure equivalence in [SNM23]. Our
starting point is an observation due to Moss and Milius [MM09], that typical axioms for recursive program
specifications (like those in [Hur+98]) are sound with respect to fractal equivalence. Work on this project
will take place at the Simons Laufer Mathematical Sciences Institute as part of their Summer Research in
Mathematics program in July 2024.

Open problems to do with fractals. Aside from the axiomatization problem regarding infinite trace, two
other questions were left as open problems in my paper with Moss and Noquez [SNM23].

Project: Is every regular subfractal a self-similar set? Moss, Noquez, and I will investigate if, given a regular
subfractal K of the Sierpinski gasket (or any other self-similar set), there is an iterated function system
that generates K. This problem has been solved in the special case where the contractions are similitudes
by Boore and Falconer in [BF13].

Project: Nondeterminism and probabilities are two common examples of computational effects in programming
languages. Are there other computational effects that have their own notion of “regular subfractal”? There
is a very general notion of infinite trace semantics for processes with computational effects modelled as
coalgebras [Jac04; Ĉır10; HJS07]. I will investigate whether there is a general theory of regular subfractals
with other computational effects, and furthermore if every notion of fractal equivalence coincides with the
corresponding notion of infinite trace.

More processes parametrized. At present, the processes parametrized framework can produce a pro-
gramming language for specifying coalgebras in the category of sets from an algebraic theory, as well as
coalgebras in the category of partially ordered sets from an ordered algebraic theory. These are only two of
many base categories that appear in coalgebraic models of computation.

Project: I will extend the processes parametrized framework to be able to handle other algebraic theories,
particularly the metric theories of Mardare, Panagaden, and Plotkin [MPP21]. A metric version of the
processes parametrized framework produces coalgebras with a metric structure. This would capture
programs written with a standard notion of behavioural distance in mind [Bal+18]. More generally, I will
develop a general recipe for producing processes parametrized-like frameworks in other categories using
monads and monad presentations.

Conclusion

Theoretical computer science is a rapidly evolving field that reaches in many directions and is in a constant
state of outgrowing its foundations. New applications demand novel mathematical formalisms, and
the situation is always better if the new formalism can be incorporated into existing theories. General
theoretical tools like universal algebra and coalgebra have made an important impact in computer science
for this reason, and I am excited to be a part of the mathematical developments in this youthful area.
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